Impact of Land Use on Watershed Health in the Western Basin of Lake Erie

Ben Bond
Joseph Bishop

Department of Geography, Masters in Geographic Information Systems (MGIS), The Pennsylvania audience State University, University Park, PA 16802
Outline

• Introduction
 • Background About Lake Erie
 • Study Area
 • Watershed Assessment
• Goals and Objectives
• Methods
 • IBI Calculation
 • Sample Regions
 • Workflow
 • Analysis
• Results
• Discussion
Western Basin of Lake Erie

- Historic Problems with Algal Blooms
- Increased Blooms in Recent History
- Ecological Shift
- Water Processing

Number of severe algal blooms in Lake Erie to double, forecast says

December 12, 2015 by Fox Fred Carter

[Image: Harmful algal bloom as seen from the research docks of The Ohio State University's Stone Laboratory on Gibraltar Island in Lake Erie in 2015. Credit: Jeff DeBoer, courtesy of Ohio State University]
Study Area

- Maumee River Basin
- Largest Watershed in Great Lakes
- Major Contributor to Lake Erie
Land Cover

- Dominantly Agriculture
- Fertile land from Great Black Swamp
- Limited Riparian Vegetation
Watershed Assessment

- Health Metrics
- Chemistry Short Term
- Biological Long Term
Ohio Bioassessment

- Very well supported
- Large Database, records since 1974
- Ohio Credible data program
Goals and Objectives

Goal
- to support management efforts and to preserve freshwater in the Western Basin of Lake Erie

Objectives
- Quantifying watershed health
- Analyzing land use within sample site zones
- Performing multiple regression analysis to determine impact of land use on IBI ratings
Methods

- Delineate Catchment Basins, Riparian buffer zones and local (1 km circle buffer)
- Calculate IBI values
- Summarize land use according to each sample point extraction zones
- Perform stepwise multiple regression to determine significant factors
Sample Points

20 Years

10 Years
IBI Calculation

- Calculated according to 12 Ohio EPA metrics
- Ranked on a score of 5-60
- Attainment classes

<table>
<thead>
<tr>
<th>Variable Measured</th>
<th>Type of Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total Number of Species</td>
<td>H W B</td>
</tr>
<tr>
<td>2. Number of Darter Species</td>
<td>H W</td>
</tr>
<tr>
<td>Percent Round-bodied Suckers</td>
<td>B</td>
</tr>
<tr>
<td>3. Number of Sunfish Species</td>
<td>W B</td>
</tr>
<tr>
<td>Number of Headwater Species</td>
<td>H</td>
</tr>
<tr>
<td>4. Number of Sucker Species</td>
<td>W B</td>
</tr>
<tr>
<td>Number of Minnow Species</td>
<td>H</td>
</tr>
<tr>
<td>5. Number of Intolerant Species</td>
<td>W B</td>
</tr>
<tr>
<td>Number of Sensitive Species</td>
<td>H</td>
</tr>
<tr>
<td>6. Percent of Tolerant Species</td>
<td>H W B</td>
</tr>
<tr>
<td>7. Percent of Omnivorous Species</td>
<td>H W B</td>
</tr>
<tr>
<td>8. Percent of Insectivorous Species</td>
<td>H W B</td>
</tr>
<tr>
<td>9. Percent of Top Carnivores</td>
<td>W B</td>
</tr>
<tr>
<td>Percent of Pioneering Species</td>
<td>H</td>
</tr>
<tr>
<td>10. Number of Individuals</td>
<td>H W B</td>
</tr>
<tr>
<td>11. Percent of Hybrids</td>
<td>W B</td>
</tr>
<tr>
<td>Number of Simple Lithophilic Species</td>
<td>H W B</td>
</tr>
<tr>
<td>12. Percent of DELT Anomalies</td>
<td>H W B</td>
</tr>
</tbody>
</table>
Catchment Basins and Buffer zones

- 3 Zones examined
 - Catchment
 - Riparian Buffer
 - Local 1km Buffer
- All water flowing into sample point across landscape
- Calculated based on DEM processing
NHDplus

DEM

FDR & FAC
Analysis

- Determine impact of land use within catchment basins compared to IBI
- Exploratory ANOVA to examine variance
- Correlation Assessment
- Stepwise Multiple Regression
Results

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1st Quartile</th>
<th>Mean</th>
<th>2nd Quartile</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBI</td>
<td>0</td>
<td>26</td>
<td>31.16</td>
<td>38</td>
<td>58</td>
</tr>
<tr>
<td>Water %</td>
<td>0</td>
<td>0.10</td>
<td>0.51</td>
<td>0.71</td>
<td>25.00</td>
</tr>
<tr>
<td>Dev %</td>
<td>0</td>
<td>7.12</td>
<td>14.24</td>
<td>12.40</td>
<td>100.00</td>
</tr>
<tr>
<td>Barren %</td>
<td>0</td>
<td>0.00</td>
<td>0.27</td>
<td>0.11</td>
<td>100.00</td>
</tr>
<tr>
<td>Forest %</td>
<td>0</td>
<td>4.20</td>
<td>6.76</td>
<td>8.30</td>
<td>58.00</td>
</tr>
<tr>
<td>Shrub %</td>
<td>0</td>
<td>0.00</td>
<td>0.04</td>
<td>0.01</td>
<td>0.53</td>
</tr>
<tr>
<td>Herb %</td>
<td>0</td>
<td>0.57</td>
<td>1.10</td>
<td>1.58</td>
<td>9.02</td>
</tr>
<tr>
<td>Ag %</td>
<td>0</td>
<td>70.92</td>
<td>74.51</td>
<td>84.54</td>
<td>100.00</td>
</tr>
<tr>
<td>Wetld %</td>
<td>0</td>
<td>0.06</td>
<td>2.07</td>
<td>2.35</td>
<td>100.00</td>
</tr>
<tr>
<td>20%</td>
<td>0</td>
<td>94.66</td>
<td>92.69</td>
<td>98.07</td>
<td>100.00</td>
</tr>
<tr>
<td>40%</td>
<td>0</td>
<td>1.18</td>
<td>3.13</td>
<td>2.60</td>
<td>100.00</td>
</tr>
<tr>
<td>60%</td>
<td>0</td>
<td>0.33</td>
<td>2.34</td>
<td>1.53</td>
<td>100.00</td>
</tr>
<tr>
<td>80%</td>
<td>0</td>
<td>0.10</td>
<td>0.69</td>
<td>0.64</td>
<td>15.32</td>
</tr>
<tr>
<td>100%</td>
<td>0</td>
<td>0.06</td>
<td>0.65</td>
<td>0.51</td>
<td>13.60</td>
</tr>
</tbody>
</table>
ANOVA

- Exploratory ANOVA to examine variance.
- Performed on catchment basins and riparian buffer zones.

<table>
<thead>
<tr>
<th></th>
<th>Catchment</th>
<th></th>
<th>Riparian Buffer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F Value</td>
<td>P Value</td>
<td>F Value</td>
<td>P Value</td>
</tr>
<tr>
<td>Water%</td>
<td>--</td>
<td>--</td>
<td>10.717</td>
<td>0.01</td>
</tr>
<tr>
<td>Dev %</td>
<td>104.159</td>
<td>0.001</td>
<td>66.138</td>
<td>0.001</td>
</tr>
<tr>
<td>Herb %</td>
<td>5.196</td>
<td>0.05</td>
<td>10.126</td>
<td>0.01</td>
</tr>
<tr>
<td>Ag %</td>
<td>18.232</td>
<td>0.001</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Wetld %</td>
<td>3.061</td>
<td>0.1</td>
<td>46.433</td>
<td>0.001</td>
</tr>
<tr>
<td>20%</td>
<td>84.531</td>
<td>0.001</td>
<td>50.283</td>
<td>0.001</td>
</tr>
<tr>
<td>40%</td>
<td>--</td>
<td>--</td>
<td>3.475</td>
<td>0.1</td>
</tr>
<tr>
<td>60%</td>
<td>3.780</td>
<td>0.1</td>
<td>5.349</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Correlation Assessment

<table>
<thead>
<tr>
<th></th>
<th>CWaterPot</th>
<th>CDivPot</th>
<th>CBarrenPot</th>
<th>CGrubPot</th>
<th>CHarbPot</th>
<th>CAgPot</th>
<th>CWet4Pot</th>
<th>C20Pot</th>
<th>C40Pot</th>
<th>C80Pot</th>
<th>C100Pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWaterPot</td>
<td>-0.27</td>
<td>***</td>
<td>0.15</td>
<td>0.07</td>
<td>0.17</td>
<td>0.25</td>
<td>0.25</td>
<td>-0.31</td>
<td>-0.31</td>
<td>-0.31</td>
<td>-0.31</td>
</tr>
<tr>
<td>CDivPot</td>
<td>0.15</td>
<td>***</td>
<td>-0.85</td>
<td>-0.90</td>
<td>0.72</td>
<td>0.67</td>
<td>0.69</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBarrenPot</td>
<td>0.07</td>
<td>-0.85</td>
<td>***</td>
<td>0.27</td>
<td>0.78</td>
<td>-0.62</td>
<td>-0.58</td>
<td>-0.60</td>
<td>-0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGrubPot</td>
<td>0.17</td>
<td>0.72</td>
<td>-0.62</td>
<td>***</td>
<td>-0.71</td>
<td>-0.82</td>
<td>-0.70</td>
<td>-0.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHarbPot</td>
<td>0.25</td>
<td>0.67</td>
<td>-0.58</td>
<td>-0.71</td>
<td>-0.71</td>
<td>0.55</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAgPot</td>
<td>0.25</td>
<td>0.69</td>
<td>-0.60</td>
<td>-0.82</td>
<td>0.55</td>
<td>0.38</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWet4Pot</td>
<td>-0.31</td>
<td>0.68</td>
<td>-0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20Pot</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>C40Pot</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>C80Pot</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>C100Pot</td>
<td>-0.31</td>
<td></td>
</tr>
</tbody>
</table>
Stepwise Multiple Regression

- **Catchment Basins**
 - $IBI \sim \text{DevelopedLand} + 40\% \text{Impervious} + \text{Herbaceous} + \text{Wetland} + 80\% \text{Impervious}$

- **Riparian Buffer Zone**
 - $IBI \sim \text{DevelopedLand} + \text{Wetland} + \text{Herbaceous} + \text{Shrub} + 20\% \text{Impervious} + 40\% \text{Impervious}$

- **Local Buffer Zone**
 - $IBI \sim 100\% \text{Impervious} + \text{Wetland} + \text{Barren} + \text{Agricultural}$
Discussion

- Developed land within catchment basin strongest negative influence on IBI scores
 - For both catchment and riparian buffer
 - Unlikely in local buffer
- Wetland strongest positive influence on IBI scores
 - Highly significant at all levels
 - Possibly less disturbance
- Agriculture not identified as significantly impacting IBI
 - Possibly hidden due to overwhelming majority
 - Additional stream interactions may be hidden.
Further Studies

- Further Research
- Addition elements
- Stronger Predictive Models
- Preservation of Lake Erie
Acknowledgements

- Joe Bishop
- Richard Boulder
- Leanne Greenlee
- Nate Tessler
- Molly Morris and the Morris Lab
- Kristina Bond
Questions?

- Ben Bond
 bmb296@psu.edu
- Joe Bishop
 jab190@psu.edu
References